当前位置:游学网 >> 资讯首页 >> 所有新闻 >> 参与者说 >> 浏览文章
行测数量关系中排列组合问题的七大解题策略
核心提示:排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。

 

4.捆绑法

所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。注意:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。

例:5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?

A.240 B.320 C.450 D.480

正确答案【B】

解析:采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有 A(6,6)=6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6) ×A(3,3) =320(种)。

 

5.插空法

所谓插空法,指在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置。

注意:a.首要特点是不邻,其次是插空法一般应用在排序问题中。

b.将要求不相邻元素插入排好元素时,要注释是否能够插入两端位置。

c.对于捆绑法和插空法的区别,可简单记为“相邻问题捆绑法,不邻问题插空法”。

例:若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?

A.9 B.12 C.15 D.20

正确答案【B】

解析:先排好丙、丁、戊三个人,然后将甲、乙插到丙、丁、戊所形成的两个空中,因为甲、乙不站两端,所以只有两个空可选,方法总数为A(3,3)×A(2,2)=12种。

 

6.插板法

所谓插板法,指在解决若干相同元素分组,要求每组至少一个元素时,采用将比所需分组数目少1的板插入元素之间形成分组的解题策略。

注意:其首要特点是元素相同,其次是每组至少含有一个元素,一般用于组合问题中。

例:将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?

A.24 B.28 C.32 D.48

正确答案【B】

解析:解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。因此问题只需要把8个球分成三组即可,于是可以将8个球排成一排,然后用两个板插到8个球所形成的空里,即可顺利的把8个球分成三组。其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是

C(8,2)=28种。(注:板也是无区别的)

 

7.选“一”法,类似除法

对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。这里的“选一”是说:和所求“相似”的排列方法有很多,我们只取其中的一种。

例:五人排队甲在乙前面的排法有几种?

A.60 B.120 C.150 D.180

正确答案【A】

解析:五个人的安排方式有5!=120种,其中包括甲在乙前面和甲在乙后面两种情形(这里没有提到甲乙相邻不相邻,可以不去考虑),题目要求之前甲在乙前面一种情况,所以答案是A(5,5)÷A(2,2)=60种。

以上方法是解决排列组合问题经常用的,注意理解掌握。最后,行测中数量关系的题目部分难度比较大,答题耗时比较多,希望考试调整好答题的心态和答题顺序,在备考过程中掌握好技巧和方法,提高答题的效率。

0% (0)
0% (10)
发表评论
用户评论

关于我们|联系我们 |广告服务 |诚聘英才 | 网站申明 |帮助中心 | 友情链接
游学网版权所有 2009 | 浙ICP备09048151号